
Tensor One Whitepaper

www.tensorone.ai

Abstract

This paper presents Tensor One, a decentralized framework for the distribution,

execution, and verification of artificial intelligence workloads across a globally

accessible network of user-contributed GPU nodes. As AI systems grow in

complexity and demand, centralized infrastructure has become a bottleneck for

scalable and equitable access. This work investigates an alternative approach in

which AI tasks, ranging from inference and multimodal generation to autonomous

agent operations, are decomposed and allocated by a resource-aware scheduler,

executed by independent nodes, and verified through smart contract–facilitated

cryptographic proofs. We design and evaluate a protocol architecture that includes

resource allocation logic, escrow-based compensation, and irreversible task

verification. In addition to the protocol itself, we demonstrate its applicability

through a decentralized application offering visual agent creation, AI tool APIs, and

model training workflows. This research contributes a novel framework for trustless,

permissionless AI compute coordination and sets the foundation for a scalable,

incentive-aligned machine intelligence network.

1 Introduction

Over the last decade, artificial intelligence has become a foundational layer across

industries, driven by advances in generative models, agent-based systems, and increasingly

large-scale inference workloads. However, the infrastructure supporting this growth

remains heavily centralized, creating barriers to access, scalability, and cost-efficiency. As

model sizes grow and demand accelerates, the reliance on concentrated data centers has

led to bottlenecks in availability, limitations in distribution, and increased exposure to

censorship and single points of failure¹.

At the same time, hundreds of millions of GPUs remain underutilized globally, sitting idle

in personal computers, gaming rigs, or small-scale clusters². Tensor One seeks to address

this imbalance by proposing a decentralized framework that transforms idle GPU resources

into an economically incentivized, verifiable compute layer for artificial intelligence. The

system enables users to become nodes within a distributed network, contributing compute

toward generative workloads, model training, and autonomous agent execution while

earning rewards proportional to their participation.

This paper presents the architecture and implementation of the Tensor One protocol. We

detail a three-stage system for task distribution and verification, comprising (1) Tensor

Resource Allocation, which schedules tasks based on computational complexity and node

performance; (2) Tensor Escrow, which secures compensation through smart contract–

mediated reward locking; and (3) Task Verification, which ensures result validity and task

irreversibility using encrypted on-chain proofs. In addition to the core protocol, we

describe the Tensor Playground, a dApp offering AI-powered tools such as uncensored

chat, code generation, video synthesis, and a visual agent builder.

We also introduce TrainOps, an AI model refinement system built atop the same distributed

GPU infrastructure, and outline our approach for launching monetizable autonomous

agents through a no-code framework. By combining cryptoeconomic incentives, verifiable

computation, and decentralized infrastructure, Tensor One enables a permissionless

network for scalable AI access and contributes toward a broader shift from centralized

machine intelligence to globally distributed, user-powered systems.

2 Objectives

Tensor One targets three systemic bottlenecks in the development of decentralized AI

infrastructure:

1. Decentralized Compute Distribution: Reduce dependency on centralized cloud platforms

by enabling compute tasks to run on a globally distributed GPU mesh via browsers.

2. Formal Agent Execution Models: Utilize state machine and DAG-based runtimes to

enforce determinism, reusability, and structured coordination across agent workflows.

3. Economic Enforcement via Protocol Incentives: Create mechanisms for task validation,

collateralized execution, slashing penalties, and compute-based rewards that are

enforced through smart contracts.

3 Task Distribution Model

Let

𝐺 = (𝑉, 𝐸)

be a directed acyclic graph (DAG), where subtasks are their dependencies are defined

as vertices and edges, respectively [1][2]:

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛}

is a set of subtasks (vertices), and

𝐸 ⊆ 𝑉 × 𝑉

is the set of directed edges such that

(𝑉𝑖 , 𝑉𝑗) ∈ 𝐸 ⇒ 𝑉𝑗 depends on 𝑉𝑖

This model allows task execution to be organized as a dependency-aware graph, where

each node represents an atomic unit of work (a subtask), and edges encode prerequisite

relationships. By structuring execution in this way, we ensure that no task is processed

before all of its dependencies have been satisfied that is a fundamental requirement for

deterministic, parallel, or distributed compute environments. The acyclic nature of the

graph guarantees that there are no circular dependencies, which simplifies scheduling

and enables safe parallelism.

Within the context of Tensor One, this DAG structure is essential for distributing

compute workloads across decentralized nodes. Each subtask can be assigned

independently once its parent tasks are completed, allowing the system to dynamically

allocate compute resources based on task readiness. This forms the basis for agent-level

scheduling, progressive task execution, and efficient orchestration of large-scale AI

workflows across the network.

4 Task Allocation Function

Let

𝑁 = 𝑁1, 𝑁2, … , 𝑁ₘ

be the set of available compute nodes, each equipped with GPU resources.

Let

𝑃𝑜𝑤𝑒𝑟(𝑁ⱼ) = 𝐹𝐿𝑂𝑃𝑠/𝑠𝑒𝑐 𝑜𝑓 𝑛𝑜𝑑𝑒𝑁ⱼ

Let

𝑅𝑒𝑤𝑎𝑟𝑑(𝑉ᵢ) = 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 𝑉ᵢ

Let

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑉ᵢ) = 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑛𝑔 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 𝑉ᵢ

Define a utility score:

𝑈ᵢⱼ = 𝛼 × (𝑅𝑒𝑤𝑎𝑟𝑑(𝑉ᵢ)/𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑉ᵢ)) + 𝛽 × 𝑃𝑜𝑤𝑒𝑟(𝑁ⱼ)

The allocation function selects the node maximizing the utility:

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑉ᵢ, 𝑁) = 𝑎𝑟𝑔𝑚𝑎𝑥ₙⱼ ∈ 𝑁(𝑈ᵢⱼ)

Where:

𝛼, 𝛽 ∈ ℝ+(𝑡𝑢𝑛𝑎𝑏𝑙𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

Our allocation strategy is inspired by multi-criteria scheduling systems that prioritize tasks based

on urgency, reward, and compute availability [1][3].

This equation decides which GPU node (Nⱼ) gets assigned a subtask (Vᵢ). It balances two

priorities:

1. Reward vs. Urgency

𝛼 ⋅
Reward (𝑉𝑖)

Deadline (𝑉𝑖)

This term prioritizes tasks that are either high-value or time-sensitive.

Example: A task offering a 10 TPO reward with a 10-minute deadline will score higher than

one offering 5 TPO with a 1-hour deadline.

2. Node Capability

𝛽 ⋅ Power (𝑁𝑗)

This term favors allocation to higher-performance nodes (measured in FLOPs).

Example: A node with an RTX 4090 is preferred for training large language models over a

mid-tier GPU.

Together, these components ensure that urgent, high-value tasks are completed efficiently

by capable nodes, aligning platform incentives with compute efficiency.

Why It Matters:

Ensures efficient resource use while incentivizing nodes to compete for high-value work.

4.1 Escrow & Compensation

To ensure trustless and verifiable execution, all task rewards are initially held in escrow.

These rewards are only released once the assigned node submits a valid proof of execution.

Let 𝑅 be the reward for a subtask 𝑉𝑖, and let 𝜋𝑖 be the proof of correct execution submitted

by the compute node.

The escrow mechanism is defined as

𝐸𝑠𝑐𝑟𝑜𝑤(𝑉𝑖 , 𝑅) = 𝑆𝐶𝑟(𝑅, 𝜋𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑉𝑒𝑟𝑖𝑓𝑦(𝜋𝑖) = 𝑇𝑟𝑢𝑒

All rewards are locked in smart contract-based escrow until cryptographic proofs of task

completion are verified, ensuring integrity and trust [4][5].

4.2 Task Verification

To ensure correctness without compromising privacy, nodes submit zero-knowledge proofs

𝜋𝑖 upon completing a subtask 𝑉𝑖. These proofs validate execution without revealing the

underlying input or output data.

The verification function is defined as:

𝑉𝑒𝑟𝑖𝑓𝑦(𝑉𝑖 , 𝜋𝑖) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝜋𝑖 , 𝐾𝑒𝑦𝑜) ∧ 𝐻𝑎𝑠ℎ(𝜋𝑖) = 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑉𝑖)

Where:

• 𝜋𝑖 is the zero-knowledge proof submitted by the node

• 𝐾𝑒𝑦𝑜 is the public key of the task owner

• Commitment(𝑉𝑖) is the pre-registered on-chain hash of the expected proof

Zero-knowledge proofs (e.g., zk-SNARKs) are used to verify task correctness without

revealing underlying data, leveraging established cryptographic protocols [4][5][8].

Proof Requirements:

• Proof 𝜋𝑖:

o A cryptographic proof (e.g., zk-SNARK) that confirms the task was

computed correctly.

• Commitment Match:

o The hash of the submitted proof must match the expected commitment

stored on-chain for that task.

Why It Matters:

This verification model prevents manipulation or falsified task completion. It acts as a tamper-

proof receipt that guarantees honest compute without exposing sensitive data which is essential

for securing trust in decentralized execution environments.

5 Incentive Mechanism

To ensure only trusted nodes are rewarded, Tensor One uses a consensus-based scoring

model. A node must be vouched for by a majority of staked participants to qualify for

rewards.

The reputation and consensus scoring system draws from cryptoeconomic designs

similar to those in Ethereum's staking and slashing mechanisms [7][8].

5.1 Anti-Collusion

The consensus score is defined as:

𝐶(𝑁𝑗) = 𝜎𝜌 (
1

𝑘
∑ Stake(𝑁𝑘)

𝑘

⋅ 𝑇(𝑁𝑘 → 𝑁𝑗) − 𝜅)

Determines if a node (𝑁ⱼ) is trusted by the majority of the network

Where:

● 𝐶(𝑁𝑗): Consensus score for node 𝑁𝑗

● 𝑇(𝑁𝑘 → 𝑁𝑗): Binary trust signal (1 if node 𝑁𝑘vouches for 𝑁𝑗, 0 otherwise)

● Stake(𝑁𝑘): The staked amount of node 𝑁𝑘, representing voting weight

● 𝜅: Trust threshold (e.g., 𝜅 = 0.5 for 50% majority)

● 𝜎𝜌: Sigmoid activation function, smoothly scaling output between 0 and 1

Trust Requirements:

● Nodes must be vouched for by more than 50% of stake-weighted peers.

● The higher the stake behind trust signals, the higher the score.

● Rewards are only issued if 𝐶(𝑁𝑗) ≥ 0.5, ensuring majority approval

Why It Matters:

This trust-based incentive model ensures that compute rewards are only distributed to nodes

that are vetted by their peers. It prevents Sybil attacks, discourages collusion, and promotes

reputation-based trust in an open network, all without relying on central authorities.

5.2 Bonded Rewards

Nodes accumulate bonds 𝐵 in peers they rank highly. This mechanism allows nodes to signal

trust and share in the rewards of high-performing participants.

The update rule is:

𝐵(𝑡+1) = 𝐵𝑡 + 𝑊 ⋅ 𝑆, 𝛥𝑆 = 𝜏 ⋅ (0.5 ⋅ 𝐵⊤𝐼 + 0.5 ⋅ 𝐼)

Where:

● 𝑊: Weight matrix representing peer rankings

● 𝑆: Stake vector

● 𝐵𝑇𝐼 Bond ownership (the rewards a node receives based on bonds it holds)

● 𝐼: Identity vector representing self-reward

● τ: Reward emission rate

Incentive Breakdown:

● Bond Ownership (𝐵𝑇𝐼)

○ Nodes earn a portion of the rewards generated by peers they’ve bonded to.

○ Example: If Alice bonds to Bob (a top performer), she receives a share of

Bob’s rewards

● Self Incentive (0.5𝐼)

○ 50% of rewards are kept by the node that completes the work directly.

Figure 4: Bonded Reward Sharing Among Nodes

6 Workflow

The Tensor One execution pipeline follows a structured lifecycle to ensure decentralized,

verifiable compute across the network:

● Task Decomposition

○ A user submits a high-level task T. his task is parsed by a Planner Agent,

which decomposes it into a Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸),

where each vertex 𝑉𝑖 ∈ 𝑉 represents a subtask, and edges (𝑉𝑖, 𝑉𝑗) ∈ 𝐸

encode execution dependencies (i.e., 𝑉𝑗 cannot begin until 𝑉𝑖 completes.

● Execution

○ Each subtask 𝑉𝑖 s assigned to an available Executor Node based on the

platform’s allocation algorithm. The node performs the computation and

submits a corresponding zero-knowledge proof 𝜋𝑖 , demonstrating the

validity of the result without revealing sensitive data.

● Finalization

○ A Finalizer Agent collects submitted proof 𝜋𝑖, verifies them using a pre-

agreed validation protocol, and upon successful verification, triggers the

release of escrowed rewards. This ensures both task correctness and fair

compensation for compute providers.

Figure 5: End-to-End Task Execution Flow in Tensor One Protocol

7 Agent Execution Layer

Autonomous agents are a powerful paradigm in decentralized AI compute as they are

capable of navigating dynamic environments and executing complex objectives without

centralized oversight. By leveraging Tensor One’s verifiable execution layer and built-in

incentive mechanisms, these agents can operate trustlessly, adaptively, and at scale.

We define an autonomous agent as a finite-state machine:

Where:

• 𝑆: Set of agent states (e.g., idle, bidding, executing)

• 𝛴: Set of possible inputs

• 𝛿: State transition function

• 𝑠0: Initial state

• 𝐹: Final or terminal states

The transition function is defined as:

𝛿(𝑠𝑡, 𝑥𝑡) = 𝑠(𝑡+1)

This function determines how the agent moves between states based on input 𝑥𝑡 at time

step 𝑡.

Explanation:

• Input-Driven Transitions: The 𝑥𝑡 (e.g., sensor data or user requests) triggers a state

change. For example, detecting “traffic jam” could shift an agent from planning to

re-routing.

• Deterministic Behaviour: Given the same state and input, the resulting state is always

the same. This ensures predictable and verifiable execution logic.

Figure 6: Agent Lifecycle State Diagram

References

[1] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-Effective and Low-

Complexity Task Scheduling for Heterogeneous Computing. IEEE Transactions on

Parallel and Distributed Systems, 13(3), 260–274.

https://doi.org/10.1109/71.993206

[2] Kwok, Y.-K., & Ahmad, I. (1999). Static Scheduling Algorithms for Allocating

Directed Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4), 406–471.

https://doi.org/10.1145/344588.344618

https://doi.org/10.1109/71.993206
https://doi.org/10.1145/344588.344618

[3] Abadi, M., Barham, P., et al. (2016). TensorFlow: A System for Large-Scale Machine

Learning. OSDI '16.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[4] Ben-Sasson, E., Chiesa, A., Tromer, E., & Virza, M. (2013). Succinct Non-Interactive

Zero Knowledge for a von Neumann Architecture. USENIX Security Symposium.

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/ben-sasson

[5] Feige, U., Fiat, A., & Shamir, A. (1988). Zero Knowledge Proofs of Identity. Journal

of Cryptology, 1, 77–94.

