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Abstract 

This paper presents Tensor One, a decentralized framework for the distribution, 

execution, and verification of artificial intelligence workloads across a globally 

accessible network of user-contributed GPU nodes. As AI systems grow in 

complexity and demand, centralized infrastructure has become a bottleneck for 

scalable and equitable access. This work investigates an alternative approach in 

which AI tasks, ranging from inference and multimodal generation to autonomous 

agent operations, are decomposed and allocated by a resource-aware scheduler, 

executed by independent nodes, and verified through smart contract–facilitated 

cryptographic proofs. We design and evaluate a protocol architecture that includes 

resource allocation logic, escrow-based compensation, and irreversible task 

verification. In addition to the protocol itself, we demonstrate its applicability 

through a decentralized application offering visual agent creation, AI tool APIs, and 

model training workflows. This research contributes a novel framework for trustless, 

permissionless AI compute coordination and sets the foundation for a scalable, 

incentive-aligned machine intelligence network. 

 

1 Introduction 

Over the last decade, artificial intelligence has become a foundational layer across 

industries, driven by advances in generative models, agent-based systems, and increasingly 

large-scale inference workloads. However, the infrastructure supporting this growth 

remains heavily centralized, creating barriers to access, scalability, and cost-efficiency. As 

model sizes grow and demand accelerates, the reliance on concentrated data centers has 

led to bottlenecks in availability, limitations in distribution, and increased exposure to 

censorship and single points of failure¹. 

At the same time, hundreds of millions of GPUs remain underutilized globally, sitting idle 

in personal computers, gaming rigs, or small-scale clusters². Tensor One seeks to address 

this imbalance by proposing a decentralized framework that transforms idle GPU resources 

into an economically incentivized, verifiable compute layer for artificial intelligence. The 

system enables users to become nodes within a distributed network, contributing compute 

toward generative workloads, model training, and autonomous agent execution while 

earning rewards proportional to their participation. 

This paper presents the architecture and implementation of the Tensor One protocol. We 

detail a three-stage system for task distribution and verification, comprising (1) Tensor 

Resource Allocation, which schedules tasks based on computational complexity and node 

performance; (2) Tensor Escrow, which secures compensation through smart contract–

mediated reward locking; and (3) Task Verification, which ensures result validity and task 

irreversibility using encrypted on-chain proofs. In addition to the core protocol, we 

describe the Tensor Playground, a dApp offering AI-powered tools such as uncensored 

chat, code generation, video synthesis, and a visual agent builder. 



We also introduce TrainOps, an AI model refinement system built atop the same distributed 

GPU infrastructure, and outline our approach for launching monetizable autonomous 

agents through a no-code framework. By combining cryptoeconomic incentives, verifiable 

computation, and decentralized infrastructure, Tensor One enables a permissionless 

network for scalable AI access and contributes toward a broader shift from centralized 

machine intelligence to globally distributed, user-powered systems. 

2 Objectives 

Tensor One targets three systemic bottlenecks in the development of decentralized AI 

infrastructure: 

1. Decentralized Compute Distribution: Reduce dependency on centralized cloud platforms 

by enabling compute tasks to run on a globally distributed GPU mesh via browsers. 

2. Formal Agent Execution Models: Utilize state machine and DAG-based runtimes to 

enforce determinism, reusability, and structured coordination across agent workflows. 

3. Economic Enforcement via Protocol Incentives: Create mechanisms for task validation, 

collateralized execution, slashing penalties, and compute-based rewards that are 

enforced through smart contracts. 

 

3 Task Distribution Model 

 
Let 

𝐺 = (𝑉, 𝐸) 

 
be a directed acyclic graph (DAG), where subtasks are their dependencies are defined 

as vertices and edges, respectively [1][2]: 

 

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} 

 

is a set of subtasks (vertices), and 

 

𝐸 ⊆ 𝑉 × 𝑉 

 

is the set of directed edges such that 

(𝑉𝑖 , 𝑉𝑗) ∈ 𝐸 ⇒ 𝑉𝑗  depends on 𝑉𝑖 

 

This model allows task execution to be organized as a dependency-aware graph, where 

each node represents an atomic unit of work (a subtask), and edges encode prerequisite 

relationships. By structuring execution in this way, we ensure that no task is processed 

before all of its dependencies have been satisfied that is a fundamental requirement for 

deterministic, parallel, or distributed compute environments. The acyclic nature of the 

graph guarantees that there are no circular dependencies, which simplifies scheduling 

and enables safe parallelism. 

 

Within the context of Tensor One, this DAG structure is essential for distributing 

compute workloads across decentralized nodes. Each subtask can be assigned 

independently once its parent tasks are completed, allowing the system to dynamically 



allocate compute resources based on task readiness. This forms the basis for agent-level 

scheduling, progressive task execution, and efficient orchestration of large-scale AI 

workflows across the network. 

 

4 Task Allocation Function 

Let 

𝑁 = 𝑁1, 𝑁2, … , 𝑁ₘ 

 

be the set of available compute nodes, each equipped with GPU resources. 

Let 

𝑃𝑜𝑤𝑒𝑟(𝑁ⱼ) = 𝐹𝐿𝑂𝑃𝑠/𝑠𝑒𝑐 𝑜𝑓 𝑛𝑜𝑑𝑒𝑁ⱼ 

Let 

𝑅𝑒𝑤𝑎𝑟𝑑(𝑉ᵢ) = 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 𝑉ᵢ 

Let 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑉ᵢ) = 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑛𝑔 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 𝑉ᵢ 

Define a utility score: 

𝑈ᵢⱼ = 𝛼 × (𝑅𝑒𝑤𝑎𝑟𝑑(𝑉ᵢ)/𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑉ᵢ)) + 𝛽 × 𝑃𝑜𝑤𝑒𝑟(𝑁ⱼ) 

The allocation function selects the node maximizing the utility: 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑉ᵢ, 𝑁) = 𝑎𝑟𝑔𝑚𝑎𝑥ₙⱼ ∈ 𝑁(𝑈ᵢⱼ) 

Where: 

𝛼, 𝛽 ∈ ℝ+(𝑡𝑢𝑛𝑎𝑏𝑙𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) 

Our allocation strategy is inspired by multi-criteria scheduling systems that prioritize tasks based 

on urgency, reward, and compute availability [1][3]. 

 

This equation decides which GPU node (Nⱼ) gets assigned a subtask (Vᵢ). It balances two 

priorities: 

1. Reward vs. Urgency 



𝛼 ⋅
Reward (𝑉𝑖)

Deadline (𝑉𝑖)
 

 

This term prioritizes tasks that are either high-value or time-sensitive. 

 

Example: A task offering a 10 TPO reward with a 10-minute deadline will score higher than 

one offering 5 TPO with a 1-hour deadline. 

2. Node Capability 

𝛽 ⋅ Power (𝑁𝑗) 

This term favors allocation to higher-performance nodes (measured in FLOPs). 

 

Example: A node with an RTX 4090 is preferred for training large language models over a 

mid-tier GPU. 

Together, these components ensure that urgent, high-value tasks are completed efficiently 

by capable nodes, aligning platform incentives with compute efficiency. 

 

Why It Matters: 

Ensures efficient resource use while incentivizing nodes to compete for high-value work. 

4.1 Escrow & Compensation 

To ensure trustless and verifiable execution, all task rewards are initially held in escrow. 

These rewards are only released once the assigned node submits a valid proof of execution. 

Let 𝑅 be the reward for a subtask 𝑉𝑖, and let 𝜋𝑖 be the proof of correct execution submitted 

by the compute node. 

The escrow mechanism is defined as 

𝐸𝑠𝑐𝑟𝑜𝑤(𝑉𝑖 , 𝑅) = 𝑆𝐶𝑟(𝑅, 𝜋𝑖) 𝑤ℎ𝑒𝑟𝑒 𝑉𝑒𝑟𝑖𝑓𝑦(𝜋𝑖) = 𝑇𝑟𝑢𝑒 

All rewards are locked in smart contract-based escrow until cryptographic proofs of task 

completion are verified, ensuring integrity and trust [4][5]. 

4.2 Task Verification 

To ensure correctness without compromising privacy, nodes submit zero-knowledge proofs 

𝜋𝑖 upon completing a subtask 𝑉𝑖. These proofs validate execution without revealing the 

underlying input or output data. 

The verification function is defined as: 

𝑉𝑒𝑟𝑖𝑓𝑦(𝑉𝑖 , 𝜋𝑖) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝜋𝑖 , 𝐾𝑒𝑦𝑜) ∧ 𝐻𝑎𝑠ℎ(𝜋𝑖) = 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑉𝑖) 

Where: 

• 𝜋𝑖 is the zero-knowledge proof submitted by the node 



• 𝐾𝑒𝑦𝑜 is the public key of the task owner 

• Commitment(𝑉𝑖) is the pre-registered on-chain hash of the expected proof 

 

Zero-knowledge proofs (e.g., zk-SNARKs) are used to verify task correctness without 

revealing underlying data, leveraging established cryptographic protocols [4][5][8]. 

Proof Requirements: 

• Proof 𝜋𝑖: 

o A cryptographic proof (e.g., zk-SNARK) that confirms the task was 

computed correctly. 

• Commitment Match: 

o The hash of the submitted proof must match the expected commitment 

stored on-chain for that task. 

 

Why It Matters: 

This verification model prevents manipulation or falsified task completion. It acts as a tamper-

proof receipt that guarantees honest compute without exposing sensitive data which is essential 

for securing trust in decentralized execution environments. 

 

5 Incentive Mechanism 
 

To ensure only trusted nodes are rewarded, Tensor One uses a consensus-based scoring 

model. A node must be vouched for by a majority of staked participants to qualify for 

rewards. 

 

The reputation and consensus scoring system draws from cryptoeconomic designs 

similar to those in Ethereum's staking and slashing mechanisms [7][8]. 

5.1 Anti-Collusion 

The consensus score is defined as: 

𝐶(𝑁𝑗) = 𝜎𝜌 (
1

𝑘
∑ Stake(𝑁𝑘)

𝑘

⋅ 𝑇(𝑁𝑘 → 𝑁𝑗) − 𝜅) 

Determines if a node (𝑁ⱼ) is trusted by the majority of the network 

Where: 

● 𝐶(𝑁𝑗): Consensus score for node 𝑁𝑗  

● 𝑇(𝑁𝑘 → 𝑁𝑗): Binary trust signal (1 if node 𝑁𝑘vouches for 𝑁𝑗, 0 otherwise) 

● Stake(𝑁𝑘): The staked amount of node 𝑁𝑘, representing voting weight 

● 𝜅: Trust threshold (e.g., 𝜅 = 0.5 for 50% majority) 

● 𝜎𝜌: Sigmoid activation function, smoothly scaling output between 0 and 1 

 

Trust Requirements: 

● Nodes must be vouched for by more than 50% of stake-weighted peers. 



● The higher the stake behind trust signals, the higher the score. 

● Rewards are only issued if 𝐶(𝑁𝑗) ≥ 0.5, ensuring majority approval 

 

 

 

Why It Matters: 

This trust-based incentive model ensures that compute rewards are only distributed to nodes 

that are vetted by their peers. It prevents Sybil attacks, discourages collusion, and promotes 

reputation-based trust in an open network, all without relying on central authorities. 

5.2 Bonded Rewards 

Nodes accumulate bonds 𝐵 in peers they rank highly. This mechanism allows nodes to signal 

trust and share in the rewards of high-performing participants. 

The update rule is: 

𝐵(𝑡+1) = 𝐵𝑡 + 𝑊 ⋅ 𝑆, 𝛥𝑆 = 𝜏 ⋅ (0.5 ⋅ 𝐵⊤𝐼 + 0.5 ⋅ 𝐼) 

Where: 

● 𝑊: Weight matrix representing peer rankings 

● 𝑆: Stake vector 

● 𝐵𝑇𝐼 Bond ownership (the rewards a node receives based on bonds it holds) 

● 𝐼: Identity vector representing self-reward 

● τ: Reward emission rate 

 

Incentive Breakdown: 

● Bond Ownership (𝐵𝑇𝐼)  

○ Nodes earn a portion of the rewards generated by peers they’ve bonded to. 

○ Example: If Alice bonds to Bob (a top performer), she receives a share of 

Bob’s rewards 

● Self Incentive (0.5𝐼) 

○ 50% of rewards are kept by the node that completes the work directly. 



 
 

 

 

 

Figure 4: Bonded Reward Sharing Among Nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Workflow 

The Tensor One execution pipeline follows a structured lifecycle to ensure decentralized, 

verifiable compute across the network: 

● Task Decomposition 

○ A user submits a high-level task T. his task is parsed by a Planner Agent, 

which decomposes it into a Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸), 

where each vertex 𝑉𝑖 ∈ 𝑉 represents a subtask, and edges (𝑉𝑖, 𝑉𝑗) ∈ 𝐸 

encode execution dependencies (i.e., 𝑉𝑗 cannot begin until 𝑉𝑖 completes. 

● Execution 

○ Each subtask 𝑉𝑖 s assigned to an available Executor Node based on the 

platform’s allocation algorithm. The node performs the computation and 

submits a corresponding zero-knowledge proof 𝜋𝑖 , demonstrating the 

validity of the result without revealing sensitive data. 

● Finalization 

○ A Finalizer Agent collects submitted proof 𝜋𝑖, verifies them using a pre-

agreed validation protocol, and upon successful verification, triggers the 

release of escrowed rewards. This ensures both task correctness and fair 

compensation for compute providers. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Figure 5: End-to-End Task Execution Flow in Tensor One Protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 Agent Execution Layer 

Autonomous agents are a powerful paradigm in decentralized AI compute as they are 

capable of navigating dynamic environments and executing complex objectives without 

centralized oversight. By leveraging Tensor One’s verifiable execution layer and built-in 

incentive mechanisms, these agents can operate trustlessly, adaptively, and at scale. 

We define an autonomous agent as a finite-state machine: 

Where: 

• 𝑆: Set of agent states (e.g., idle, bidding, executing) 

• 𝛴: Set of possible inputs 

• 𝛿: State transition function 

• 𝑠0: Initial state 

• 𝐹: Final or terminal states 

The transition function is defined as: 

𝛿(𝑠𝑡, 𝑥𝑡) = 𝑠(𝑡+1) 

This function determines how the agent moves between states based on input 𝑥𝑡 at time 

step 𝑡. 

Explanation: 

• Input-Driven Transitions: The 𝑥𝑡 (e.g., sensor data or user requests) triggers a state 

change. For example, detecting “traffic jam” could shift an agent from planning to 

re-routing. 

• Deterministic Behaviour: Given the same state and input, the resulting state is always 

the same. This ensures predictable and verifiable execution logic. 



 

 

 

Figure 6: Agent Lifecycle State Diagram 
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